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Introduction
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The ability to control vocalization is an integral part of human speech and ——— -—

verbal communication, relying heavily on a constellation of cortical regions.
Changing vocal pitch is a highly complex process in spoken communication
and requires a coordinated sensory-motor network to monitor the output in

real-time and post-production [1].
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Different brain regions are suggested as the main coordinators of To recording

vocalization and pitch change, including two distinct cortical regions that system

control laryngeal movements: the ventral laryngeal motor cortex (vLMC) and Vocalization Listening

the dorsal premotor region (dLMC) [2]. Figure 1. Schematic of task design. The target’s starting point was calibrated to icl

These primarily motor regions, engaged in planning and executing motor each subject's baseline pitch, and a subsequent increase of 300 cents per second

commands, are also active during auditory information processing [3, 4]. above this baseline was introduced after approximately 1 second. Participants'

Although known as motor regions responsible for motor planning and real-time vocal pitch (FO) was extracted and displayed on the screen. They were s

execution, neural activity patterns in non-speech vocalization and monitoring instructed to modulate their vowel vocalizations by following a visual target to 3 ? 4

match their vocal pitch to the visual target on the screen. Each vocalization trial
was recorded and immediately played back to the participant through insert
earmolds for the listening trials.
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auditory feedback remain understudied.
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We investigated alterations in intracranially recorded local field potentials
(LFPs) in three right-handed neurosurgery patients (Table 1) requiring stereo-
electroencephalography (SEEG) and electrocorticography (ECoG) recordings
for clinical monitoring.

The recordings were conducted during a task in which the participants learned
to control their voice to create sustained vowel vocalizations with cued
dynamic pitch changes compared to passively listening to the playback of the
same self-produced sounds (Figure 1). All poorly performed trials (i.e., those
where the subjects couldn’t increase their pitch to half of the goal pitch or
vocalization onset was off by more than 0.5 seconds from the cue) were
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Figure 2. Surface electrode coverage. ECoG coverage of all three
participants was non-linearly co-registered and transformed into
Montreal Neurological Institute (MNI) space. The precentral gyrus (red),
caudal middle frontal gyrus (blue), and inferior frontal gyrus (black) are
highlighted in color.
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LFPs recorded from surface electrodes sampled at 2 kHz online were included Vocalization Listening Vocalization Listening 8 Figure 5. The ERBP of right and left hemisphere exemplars show the pattern

in the analysis. First, signals were downsampled to 1 kHz and denoised using
a demodulated band transform (DBT) with a bandwidth of 0.25 [5]. Singular
value decomposition was implemented to discard the first principal
component based on the covariance matrix computed from the high-pass
(300 Hz) filtered data [6]. Broadband (1-150 Hz) event-related band power
(ERBP) was calculated using the DBT method from LFPs recorded in the
dorsolateral prefrontal cortex, inferior frontal gyrus, superior temporal gyrus,

of cortical activity in the posterior premotor area and caudal inferior frontal
gyrus during vocalization and listening. In the left hemisphere, increased
activity at higher frequencies during vocalization and at lower frequencies
during listening is evident. In the right hemisphere, the activity pattern
(increased or suppressed) is noticeable at lower frequencies either during
vocalization or listening.
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and precentral gyrus using surface grids during both vocalization and passive =i
listening trials. > | : SU mmary
For both vp(_:alization and _pas_sive listening responses, ERBP was cal_culated ._—:_ _-'_E:E;—',_,‘ 3 These results show that regions primarily known as motor areas are also
?Y no:mahzmg po1s'g(\;oc:i:!zatlondspgc;ccral powe:_relgtwe to the_basdelm_e power ] —— = engaged in the perception of sustain vowel vocalization during listening
rom 1 second to milliseconds betore vocalization onset (i.e., during = it — to the playback. Although this study is limited to three subjects,
silence). Spatloterr!poral 'dynamltlzs of ccl)rtlcal activity at each frequJencyl range E‘_ : Figure 4. Spatiotemporal pattern of cortical activation during vocalization and listening to hemisphere lateralization may be considered in pitch production.
(defined as 1-4 Hz 'Delta,’ 4-8 Hz 'Theta,’ 8-14 Hz 'Alpha,’ 14-30 Hz 'Beta,’ 30-70 . playback for exemplar left and right hemispheres at each frequency range. We defined three However, both hemispheres seem active and engaged in the perception
Hz Low—qur_nz_a, 70-1 50'H_Z High-Gamma') were overlaid on the native mesh _ main time points to examine the cortical activity pattern: 1) Voice onset (t = 0): When the subject of auditory stimuli, not only in the auditory cortex but also in motor
surface of individual participants. Electrode response density was calculated 3 sees the cue on the screen and starts vocalization. 2) Pitch increase (t = 1s): When the target : : . .
: : ; i ) @ _ : _ o _ regions responsible for vocal motor planning and execution.
for each electrode displaying a given response profile in 1-cm-diameter starts moving upward, the subject should increase their pitch. 3) Pitch peak (t = 2.5): When the
regions of the canonical cortical surface (Figure 4). subject reaches the maximum level of increased pitch.
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